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Compounds and Biological Effects
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Nonionic surfactants are amphipathic mol-
ecules consisting of a hydrophobic (alkylat-
ed phenol derivatives, fatty acids, long-
chain linear alcohols, etc.) and a
hydrophilic part (generally ethylene oxide
chains of various length). Although not as
important commercially, tertiary amine and
various sugar surfactants are also nonionic
surfactants. Due to their favorable physico-
chemical properties, nonionic surfactants
are extensively used in many fields of tech-
nology and research. The application of
nonionic surfactants in various biotechno-
logical processes has been recently reviewed
(1). Surfactants have been successfully used
to decrease the foaming of fermentation
broths during solvent extraction (2),
increase the conversion of linoleic acid to its
hydroperoxide (3), and enhance the rate of
cellulose hydrolysis (4). Nonionic surfac-
tants are an integral part of the majority of
pesticide formulations (5). They increase
the leaf retention of spray solutions (6),
enhance adhesional forces of aqueous
droplets on crop leaf surfaces (7), and gen-
erally improve the effectiveness of active
ingredients (8,9). However, not only do
surfactants influence the performance of
pesticides, but the pesticides exert some
effects on the fate of surfactants; for exam-
ple, pesticides promote or inhibit the pho-
tolytic degradation of nonionic surfactants
(10).

Nonionic surfactants are also used in
pharmaceuticals to increase their stability
(11) and to enhance the dissolution rate of
active ingredients from suppositories (12)
and solid dispersions (13), for example.
The pharmaceutical industry also uses non-
ionic surfactants to facilitate solubilization
(14) and to increase the stability of drug-
carrier emulsions (15). Surfactants marked-
ly modify the particle size of precipitated
drugs, too (16,17. Due to strict regula-
tions, nonionic surfactants have only limit-
ed application in the food industry, where
they are employed to change the stability
of various emulsions (18) and to decrease
the retrogradation of amylopectin (19).
Nonionic surfactants also have been used
in analytical chemistry to increase the fluo-
rescence of dansylated amino acids (20),
improve protein separation in capillary
zone electrophoresis (21), and mask side
effects in spectrophotometry (22).

This review presents a critical evaluation
of recent results of studies on the interac-
tion of alkyl ethoxylated and alkylphenol

ethoxylated nonionic surfactants with vari-
ous bioactive macromolecules and with
organisms. The fate of surfactants in vari-
ous ecological systems has been extensively
studied. Nonionic surfactants are generally
easily degradable; however, in some cases
the persistence of intermediates has been
observed. Due to the limited scope of this
review, investigations of intermediates will
not be discussed in detail.

Interaction with Bioactive
Macromolecules
The mode of action of nonionic surfactants
and the hydrophilic (electrostatic) or
hydrophobic character of their interaction
with bioactive molecules, organs, and organ-
isms have been extensively discussed. The
results are sometimes contradictory, and the
character of interaction depends consider-
ably on the interactive molecular species.

Proteins, peptides, and amino acids.
Many studies have indicated that nonionic
surfactants readily bind to various proteins.
This phenomenon has been frequently
exploited to extract and solubilize sparingly
soluble proteins such as membrane proteins
(23). Nonionic surfactants derived from
tris(hydroxymethyl)-aminomethane perform
well in the solubilization of subcellular pro-
teins of rat hepatocytes and membrane anti-
gens from tumor cells (24). Nonionic surfac-
tants are generally less effective than ionic
surfactants; for example, Tween 80 and
polyoxyethylene-9-laurylether have a negligi-
ble effect on the dissociation, y-chymotryptic
degradation, and enteral absorption of
insulin hexamers (25). Surfactants also mod-
ify the adsorption capacity of proteins and
peptides: Tween 80, Triton X-100, and
PEG 6000 decrease the adsorption of uroki-
nase on glass surfaces; however, they were
less effective than gelatin (26). The adsorp-
tion of fibrinogen was markedly lower on
polyoxyethylene-polyoxypropylene-coated
polystyrene latex (27), and the adsorption on
self-assembled monolayers of fibrinogen,
lysozyme, pyruvate kinase, and RNAse A
was inhibited by oligoethyleneoxides (28).

Surfactants exert a protective effect on
proteins. At a 2% concentration, Tween
20 completely prevented the denaturation
of rabbit skeletal myosin by freezing and
thawing, and glycerol enhanced synergisti-
cally the protective effect (29).

The majority of research on protein-
surfactant interaction has focused on the
binding of surfactants to enzymes and the

Ths.rev.8 da....w.ith. recet adv ssfii
thestudy of interation f nonionic suraic-
t

,.,

wihpotia, pepdsamnad,
membrane phoaphohpids, and ozpisms.
The e&fict of...r.aas on thes.cr....e
and biologicavity of the ie g bio-

.. .. .. .. ... ....

moeue ta raim is- di .sd with
em.phass on. the impact -of hyophobic and

..i......|
.i*

h..d.phl in :_wsi ...treon bio-
lgcal eiciy. KeIy"sd.at toyt-

*lie 10115W iit qvlated nonionic surfactans, phospholipids,
proteins, surfactant& E~n#iren:HeaIth
Perspe 103:358-6 (1995)

effect of surfactant binding on enzyme
activity. These results will be discussed later.
Because the molecular basis of the binding
of surfactants to proteins has not been elu-
cidated in detail, some investigators have
tried to pinpoint individual amino acids
accounting for the binding. Charge-transfer
chromatographic methods indicate that
nonylphenyl hexaethoxylate only interacts
with some amino acids, with the order of
relative strength of interaction Tyr>
Glu>Phe>Hyp>Gln>Cys>Gly. A significant
linear relationship has been found between
the interactive strength and the hydropho-
bicity of amino acids. The authors conclud-
ed that the interaction of individual amino
acids with the surfactant is fairly low and
does not explain the strong interaction of
surfactant with proteins observed in many
studies (30). It was assumed that the long
surfactant molecule lies parallel with the
protein surface, contacting more than one
amino acid residue. The strength of interac-
tion varies according to the amino acid
sequences, and hydrophobic forces are
probably involved in the interaction (30). A
similar study dealing with the interaction of
amino acids with ethoxylated stearic acid
surfactants found that surfactants interact
with free amino acids in the following
order: Cys>Phe>Tyr>Asn>Met>Nle>Leu>
Gln>Lys>Ser>Trp. In this case the electron-
ic parameters of surfactants had a significant
impact on the strength of interaction (31).

The forces involved in the binding of
nonionic surfactants to proteins are being
characterized. The results indicate that the
hydrophobic moiety of surfactants can
bind to the apolar amino acids, whereas the
hydrophilic ethyleneoxide chain can inter-
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act with the peptide bond and with one or
more polar amino acid residues, probably
by electrostatic forces and hydrogen bond-
ing.

Membrane phospholipids. Results of
many studies indicate that nonionic surfac-
tants interact not only with proteins but also
with membrane phospholipids by modifying
their structure and permeability. As phos-
pholipids are chemically simple compounds,
the principles of various surfactant-phos-
pholipid interactions and the character of
forces involved are fairly well known.

Surfactants generally increase the perme-
ability of phospholipid membranes and vesi-
des, causing leakage of compounds with low
molecular mass. The loss of ions, amino
acids, etc., may result in cell damage or cell
death. It is generally accepted that the
increased permeability is the result of mem-
brane disruption. Supramolecular surfactants
(polyethylene glycol + dicarboxylic acid
esters) as well as Triton X-100 readily disrupt
egg yolk phosphatidylcholine membranes
(32). An increase in permeability has been
observed in many model systems: Triton X-
100 and some new synthetic surfactants
caused leakage from palmitoyloleoyl phos-
phatidylcholine/cholesterol large unilamellar
vesicles (33). The concentration and aggrega-
tion state of surfactants also exert a consider-
able effect on their membrane-damaging
capacity: monomeric Triton X-100 causes
leakage of dipalmitoyl-phosphatidylcholine
vesicles, whereas micellar solutions result in
the catastrophic rupture of membrane (34).
Some new surfactants, (HO
(C2H40)6C0(CH2) 14CO2C2H4 O)6H
and HO(C2H40)6CO(CH2)6CH=CH
(CH2)6CO2C2H4O)6H and their poly-
meric counterpart, were synthesized and
their capacity to disrupt egg yolk phos-
phatidylcholine and palmitoyloleoyl phos-
phatidylcholine bilayers determined at vari-
ous cholesterol concentrations in the bilay-
er. It was established that the effect of new
synthetic surfactants depends on the choles-
terol concentration in the bilayer, whereas
the effect of Triton X-100 is not affected
by the cholesterol concentration (35).
Unfortunately, the cause of the damaging
behavior of the new surfactants was not
explained in detail. The same surfactants
caused leakage or rupture of palmitoy-
loleoyl phosphatidylcholine vesicles
depending on the membrane packing (36).
The condensation product of hexaethyl-
eneglycol and various dicarboxylic acids
considerably increased the release of 5(6)-
carboxyfluorescein from the large, unil-
amellar vesicles of palmitoyloleoyl phos-
phatidylcholine (37,38).

The interaction of surfactants with arti-
ficial membranes modifies many physico-
chemical parameters of the phospholipids:
A fluorescence depolarization study indi-

cated that alkanoyl-N-methylglucamide
surfactants decrease the fluidity of dipalmi-
toyl phosphatidylcholine membranes (39).
Nonionic surfactants decreased the phase
transition temperature of negatively
charged dilauroylphosphatidic acid mem-
brane. The interaction between surfactant
molecules incorporated in the lipid mem-
brane was also observed (40).

The effect of surfactants on natural
membranes has also been observed.
Surfactant can disrupt not only artificial
membranes but also modify the physico-
chemical characteristics of natural mem-
branes. Nonionic surfactants were able to
increase the permeability of sarcoplasmic
reticulum vesides (41), and Pluronic L8 1, a
hydrophobic surfactant, markedly influ-
enced the cholesterol homeostasis of intesti-
nal mucosa; however, it was not specified
whether this effect was due to the direct
surfactant-cholesterol interaction or due to
the result of other, not well known bio-
chemical or biophysical processes (42).

The number of studies dealing with the
elucidation of the relationship between
surfactant structure and membrane-damag-
ing activity is surprisingly low. Adiabatic
differential-scanning calorimetric measure-
ments indicated that [2-(alkoxy)-phenyl]-
2-(1-piperidinyl)ethyl esters of carbamic
acid interact with dipalmitoyl phos-
phatidylglycerol model membranes, and
the effect depends on the length of ethyle-
neoxide chain (43). The effect of poly-
oxyethylene cetyl ethers on the vesicle to
micelle transitions of egg yolk phos-
phatidylcholine liposomes also markedly
depends on the length of polar ethyleneox-
ide chain (44). It has been found that poly-
oxyethylene-polyoxypropylene block
copolymer molecules are intercalated with
phosphatidylcholine monolayers (45).

Although the binding of surfactants to
proteins and phospholipids seem to be two
independent procedures, a comparative
study suggested that there is a strong rela-
tionship between the skin irritation poten-
tial of surfactants and their capacity to
increase dye leakage from egg yolk phos-
phatidylcholine unilamellar liposomes (46).

It can be concluded that the interaction
of nonionic surfactants with membrane
phospholipids involves the insertion of the
hydrophobic moiety of surfactants into the
apolar fatty acid domain of phospholipids.
However, this insertion is not enough to
disturb the membrane organization. Linear
substructures (fatty acids, long-chain alco-
hols) are well accomodated and do not dis-
turb the membrane organization. Bulky
hydrophobic moieties (alkylated phenols)
cause severe disturbances between the apo-
lar fatty acid chains, resulting in increased
permeability and leakage. The hydrophilic
ethyleneoxide chain probably has two func-

tions: it regulates the insertion depth of
hydrophobic moiety (longer ethyleneoxide
chain draws the hydrophobic moiety
toward the aqueous outer phase), indirectly
influencing its membrane damaging effect,
or it binds to the polar head group of phos-
pholipids. As the long ethyleneoxide chain
can contact more than one head group, it
can stabilize the membrane organization.
The effects observed are the result of the
interplay of the interactions oudined above.

Proteins and membrane phospholipids
simultaneously occur in many living cells.
In these instances surfactants can bind both
to the proteins and phospholipids. The
preference of surfactants either for proteins
or for phospholipids in a complicated living
system has never been studied in detail.

Biological Effects
Stimulation and inhibition of enzymes.
Nonionic surfactants readily bind to vari-
ous proteins, and the binding modifies pro-
tein solubility and structure. These changes
may also result in the stimulation or inhibi-
tion of the biological activity of enzymes.
Unfortunately, most studies dealing with
the effect of surfactants on enzyme activity
are limited to determining the degree of
stimulation or inhibition and do not eluci-
date the underlying molecular mechanism.

An N-acetyl-D-glucosaminyltransferase
detected in human carcinoma Colo 205 cells
showed optimum activity in the presence of
the nonionic detergent Triton CF-54 (47).
Glycolipid glucuronyltransferase isolated
from embryonic chicken brain shows opti-
mum activity in the presence of neutral
detergents such as Triton CF-54, Triton
DF-12, and Nonidet P-40 (48). Triton X-
100 activated lecithin:cholesterol acyltrans-
ferase (49), stimulated the activity of rat liver
mitochondrial phosphatidylserine decar-
boxylase (50), and, together with other non-
ionic surfactants (Myrj 52, Myrj 59, Tween
20, Tween 80, etc.) at 0.1% (w/v), increased
the activity of human leukocyte proteinase
elastase and cathepsin G (51). Nonionic sur-
factants having a polyoxyethylene chain have
been shown to effectively increase the activi-
ty of Chromobacterium viscosum lipase in
aerosol bis(2-ethylhexyl)sodium sulfosucci-
nate reverse micelles (52). Octaethylene gly-
col dodecyl ether induced the dissociation of
membrane-bound Na+/K+-ATPase purified
from dog kidney (53). An interesting study
indicated that the effect of surfactant strong-
ly depends on its concentration: Triton X-
100 stimulated the activity of the ATPase-
active P-glycoprotein at low concentrations
and inhibited it at higher concentrations
(54).

The hydrophobic or hydrophilic char-
acter of surfactant-enzyme interactions has
been established only in a few instances.
Nonhomologous series of nonionic surfac-
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tants increased the activity of papain and
modified its structure as determined by dif-
ferential scanning calorimetry. Both the
hydrophobic and hydrophilic molecular
characteristics of surfactants influenced
their effect on the activity and structure of
papain (55). In contrast, similar surfactants
markedly inhibited the activity of horserad-
ish peroxidase. Also in this instance both
the hydrophobic and hydrophilic molecular
characteristics of surfactants influenced
their effect on the activity of the enzyme
(56). Triton X-100 activated the plasma
membrane ATPase. This effect was tenta-
tively explained by the alteration of the
hydrophobic environment around the
enzyme (57). Reduced lysozyme at pH 2.5
bound polyoxyethylene alkylethers
(C1OE6, C12E6, and C12E8 surfactants);
the maximum bond reached 0.5-0.7
mol/mol amino acid residue (58). It was
further established that the interaction most
likely takes place between the hydrocarbon
tail of the surfactant and the hydrophobic
domain of reduced lysozyme (55i).

Many results prove that nonionic sur-
factants can considerably modify the activi-
ty of various enzymes. This effect can be
both beneficial (biotechnological processes)
or harmful (toxicity toward humans, ani-
mals, plants, etc.). It is currently impossi-
ble to predict the behavior of sur-
factant-enzyme systems. We need much
more data on the molecular basis of mode
of surfactant binding to proteins for the
rational design of surfactants with optimal
biological efficiency and with minimal
toxic side effects.

Microorganisms and insects. Due to
their capacity to interact with proteins and
phospholipids, nonionic surfactants exert
many biological effects on microorganisms
and insects. These effects have been suc-
cessfully exploited in some biotechnologi-
cal and immunological processes. Tween
80 enhanced the ligninase production and
growth of the fungi Phanerochaete
chrysosporium (60). Polyethylene glycol
600 increased the y-amylase production of
Bacillus subtilis, whereas polyethylene gly-
col 3350, Triton X-100, and Tween 80
were ineffective, proving again that the
character of surfactant has a marked influ-
ence on its biological efficiency (61).
Tween 80 modified invertase secretion by
Neurospora crassa and the cell-wall-less
slime secreted by an N. crassa mutant(62).
Polyethylene oxide-polypropylene oxide
block-polymers up to 7.90 Da molecular
mass stimulated the secretion of antibodies
against Streptococcus pneumoniae-derived
hexasaccharide-protein conjugates (63).
The same block-polymers enhanced the
avidity of antibodies in polyclonal antisera
against Streptococcus pneumoniae type 3 in
normal and Xid mice (64). Nonionic sur-

factants such as hexa-, octa-, and decaeth-
ylene glycol monohexadecyl ether in com-
bination with alkyl phosphates inhibit the
adherence of Streptococcus mutans on a
hydroxyapatite surface (65).

Nonionic surfactants have toxic effects
too. They increased cell fusion caused by
polyethylene glycol (66). Triton X-100
and Triton XR suppressed spore germina-
tion and germ tube growth of Mucor muce-
do on tomatoes in storage (67). Triton X-
100 caused the cell death of Bacillus subtilis
by inducing cell autolysis (68). It has been
suggested that the surfactant interacts with
the regulatory system of autolysis and thus
affects the activation of autolysis in B. sub-
tilis (69). Three to four orders of magni-
tude differences were found between the
sensitivity of various algae species and sur-
factant toxicity (70). Two types of nonyl-
phenol ethylene oxide-acetate did not
influence the growth of Acinetobacter cal-
coaceticus, Photobacterium phosphoreum, or
Serratia marinorubra, but inhibited the
growth of marine heterotrophic flagellates
(71). Nonionic surfactants (Activator N.F.
and Ortho X-77) were moderately toxic to
larvae of the midge Chironomus riparius
(72).

The fate of nonionic surfactants in soils
and surface waters has been vigorously
studied. It was established that they
decompose relatively easily; however, the
results depend slightly on the character-
isitcs of the ecological system under inves-
tigation. Polyethoxylated linear alcohol
derivatives were mineralized without lag
periods by rhizosphere microbial commu-
nities in surface soils (73). The microflora
of aquatic plants decompose about
30-40% on nonionic surfactants in 30
days (74). According to another study, the
half-life of linear ethoxylated surfactants
was 8.4 days as decomposed by the micro-
biota of submerged plant detritus (75).
The effect of surfactants on the biodegra-
dation of other xenobiotics has not been
determined unambiguously. One study
found that nonionic surfactants inhibit the
mineralization of phenanthrene in soil,
probably by interacting with the mem-
brane of soil microflora (76), whereas
another study reported that the nonionic
surfactant (CH2)12-14(OCH2CH2)5.60H
added to the soil surface promoted the
biodegradation of phenanthrene and
biphenyl in Lima silt loam (77). This dis-
crepancy may be due to the different
microbial populations of soils and the dif-
ferent stability of surfactants against micro-
bial decomposition.

The relationship between the microbi-
ological effect of surfactants and their
chemical structure has been studied only in
a few instances. Tween compounds
induced hydrogen production in aqueous

suspensions of Anabaena variabilis in the
order Tween 85>Tween 80>Tween 60.
Tween 20 was ineffective (78). This find-
ing indirectly proves that the effect of sur-
factants depends both on the character of
the hydrophobic moiety and the length of
the polar ethylene oxide chain.
Polyalkylene glycols improved cell growth,
viability, and alcohol production of
Saccharomyces cerevisiae. The effect
depended on the number of ethylene oxide
groups in the surfactant molecule (79).
Surfactants with more ethylene oxide
groups showed lower toxicity toward
Mysidopsis bahia (80).

Nonionic surfactants can stimulate or
inhibit the growth of a wide variety of
microorganisms. These effects have a
marked impact on human health care,
biotechnology, environmental protection,
and agrochemistry. A better understanding
of the underlying biochemical and bio-
physical processes would be of considerable
interest for the safer application of nonion-
ic surfactants.

Plants. The direct effect of nonionic
surfactants on plant species has rarely been
studied because surfactants generally contact
plants in combination with various pesti-
cides. It has been found that nonionic sur-
factants cause phytotoxic symptoms in
tobacco (Nicotiana tabacum), sugar beets
(Beta vulgaris), and spiderwort (Tradescantia
albiflora). Surfactants with low and high
numbers of ethylene oxide groups were less
effective (81). It has been shown that the
more hydrophilic surfactants (fewer ethyl-
ene oxide groups) had the smallest effect
both on ethylene evolution and leaf growth
in Phaseolus vulgaris (82). Nonionic surfac-
tants considerably decreased the net potassi-
um influx in roots of wheat seedlings; their
effect depended on the number of ethylene
oxide groups and on the overall hydropho-
bicity of the surfactant (83). The pH of the
solution did not significantly influence the
sorption of octylphenoxy surfactants on iso-
lated tomato fruit cuticles, indicating that
ionic interactions have a negligible effect on
sorption (84). The toxicity of these surfac-
tants to cowpea leaves was found to be
inversely related to the length of the ethyl-
ene oxide chain (85).

These data suggest that the physico-
chemical parameters of surfactants play a
considerable role in the extent of phytotox-
ic activity. Similar results have been found
when surfactants were used in combination
with pesticides. Octylphenoxy surfactants
increased the foliar uptake of DDT and
atrazine. The effect was inversely related to
the hydrophile:lipophile balance of surfac-
tants (86). Complex stability between 2-(1-
naphthyl)acetic acid and surfactant
micelles decreased with the logarithm of
the length of ethyleneoxide chain for
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Triton X surfactants. Nondissociated
forms of the plant growth hormone
formed more stable complexes (87).

Animals and animal models. The wide-
spread use of nonionic surfactants makes it
probable that organisms may absorb a
great quantity of surfactants. To elucidate
their toxic effects, a variety of animal mod-
els have been used.

In rats, surfactant can enhance the toxic
effects of xenobiotics when administered
simultaneously. Surfactants increased the
absorption of xenobiotics in rat colon (88).
Tween 80 enhanced the intestinal absorp-
tion of the anthelminthic drug albendazole
in rat gut (89), whereas polysorbate 80
increased the absorption of phenylalkylcar-
boxylic acids in rat colon (90).

Nonionic surfactants themselves show
toxic effects. Hexaethoxylated linear pri-
mary alcohol (C9 11) is moderately toxic by
the oral route in rats. By the dermal route,
it does not produce skin irritation or sys-
temic or reproductive toxicity at concen-
trations used in formulated cleaning prod-
ucts (91). Lubrol PX 0.8% (v/v) (pH
6.98-0.02) and Triton X-100 0.5% (v/v)
(pH 7.41-0.03) significantly increased the
pH of mucosal surface of rat proximal
jejunum (control pH 6.23-0.02) (92).
Emulgen 913 (polyoxyethylene glycol
nonylphenyl ether) decreased liver weight
and the cytochrome P450, cytochrome b5
and microsomal heme content in rats,
whereas heme oxygenase activity was great-
ly enhanced (93,94). The nonionic surfac-
tant nonoxynol-9 changes vaginal perme-
ability in ovariectomized rats as deter-
mined by nigrosin staining and measure-
ment of bioelectronic parameters, whereas
Tween 80 was ineffective (95,96).

In mice, polysorbates (Tween 20, 21,
80, and 81) as well as poloxamer and
poloxamine surfactants had only a slight
influence on the permeability of methanol
through a full thickness mouse skin; how-
ever, the permeability of lipophilic octanol
decreased (97,98).

In rabbits, nonionic surfactants
enhanced the systemic absorption of a-
melanocyte-stimulating hormone via the
ocular route in rabbits (99). The cytotoxici-
ty order of surfactants on rabbit corneal
epithelial cells was cationic>anionic=
amphoteric>nonionic; however, Triton X-
100 had a ranking similar to anionic surfac-
tants (100). Poloxalene (30% polyethyle-
neoxide and 70% polypropylene oxide,
MW 3000) inhibited neutral fat and cho-
lesterol absorption in rabbits (101). The
study of the uptake of neutral red by rabbit
corneal cells revealed that nonionic surfac-
tants have a lower toxic effect than cationic,
anionic, and amphoteric ones (102).

Triton X-100 at concentrations over the
critical micellar concentration induced lysis

of isolated gill epithelial cells in
Oncorhynchus mykiss (103); however, Triton
X-100 showed a lower effect than ionic sur-
factants (104). Emulgen 913 (polyoxyethyl-
ene glycol nonylphenyl ether) significantly
decreased the concentration of metal-bind-
ing proteins in the hepatopancreas and less-
ened the heme-oxygenase activity in the
kidney of red carp (105). The adsorption of
salicylic acid on hamster cheek pouch
decreased in the presence of the nonionic
surfactant polysorbate 80, while ionic sur-
factants enhanced adsorption (106).

The results discussed above clearly show
that nonionic surfactants influence many
biological processes, and the effect is general
noxious to the living organisms. However, it
has been found that Tween 20 was as effi-
cient as natural surfactant in improving gas
exchange and compliance in preterm lambs
with respiratory failure (107).

The structure and physicochemical
parameters of surfactants exert a marked
impact on their biological activities. The
effect of nonylphenol-polyethoxylates on
the bioelectric properties of the vagina of
rats showed a nonlinear relationship with
the number of ethylene oxide groups per
molecule (108). Surfactants having a linear
alkyl chain greater than 8 carbons and an
ethylene oxide chain length of less than 18
caused significant increases in the flux of
methyl nicotinate across hairless mouse
skin. Surfactants having branched alkyl
chain or aromatic moieties in the
hydrophobic portion were ineffective
(109). The toxicity of polyoxyethylene alkyl
ethers decreased by increasing length of the
alkyl chain and increased by the length of
the polyoxyethylene headgroup (110).

These data draw attention to the fact
that the appropriate selection of surfactants
and the synthesis of new surfactants with
less toxic side effects may result in lower
environmental pollution without losing the
advantages of surfactant application.

Human aspects. Human skin has the
highest probability of being in contact
with surfactants. The cytotoxicity of 17
surfactants on cultured human skin fibrob-
lasts were determined, and it was found
that Brij 35, 58, and 99 are a highly cyto-
toxic. Addition of fetal calf serum
decreased the toxicity, probably by binding
the surfactants and lowering the concentra-
tion of free surfactants (111). Brij 78, Brij
99, and Triton X-100 were more toxic
than Tween 40 and 80 (112). It has been
stated that the method used is suitable for
predicting irritation potential of surfactant
in vivo.

Not only can surfactants cause skin
irritation, they can also exert beneficial
effects, such as promoting the transport of
drugs accross the skin. Brij-36 increased
the transport of methyl nicotinate and

hexyl nicotinate across the skin, whereas
sodium dodecyl sulfate was ineffective
(113,114). Surfactants can effectively
increase the transdermal permeation of
therapeutic peptides and proteins (115).
Polysorbate 80 and polyoxyl 40 markedly
influenced the transepithelial permeability
in monolayers of human intestinal epithe-
lial cells (116). The capacity of surfactants
to increase the transport of many drugs
across the skin may be due to the interac-
tion of surfactants either with the drug or
with the skin: sorbitane mono-oleate and
polyoxyethylene-n-lauryl ether can interact
with both the drugs and the skin in degrees
dependent on the polarity of the surfactant
and the drug (117). Diethylene glycol lau-
rylether increased the penetration of theo-
phylline and adenosine into excised human
skin by a factor of 2.2-2.7, respectively
(118). Anionic and cationic surfactants
exert a marked effect on the permeability
of human skin, whereas the effect of
Tween 60 was negligible (119).

Surfactants can modify the permeabili-
ty of blood cells when they enter the
organism. Triton X-100 caused a rapid
release of ATP from human red blood
cells, while the presence of Brij 58 retarded
the mobilization of the intracellular ATP
(120). A study comparing two cytotoxicity
tests for predicting ocular irritancy estab-
lished that the red blood cell lysis test was
predictive. Surfactants caused membrane
disruption; anionic and cationic surfactants
were more toxic than nonionic ones (121).
Polyethoxylated nonionic surfactants
inhibit the transport of 2,4-dinitrophenyl
glutathione out of intact human erythro-
cytes. Surfactants may modify the arrange-
ment of integral membrane proteins such
as P glycoprotein and presumably the glu-
tathione transporters (122).

Nonionic surfactants show consider-
able therapeutic effects by synergistically
increasing the efficiency of drugs. The
nonionic block-polymer surfactants LIOI
and 31R1 stimulated the induction of
delayed-type hypersensitivity on the
murine humoral and cellular immune
response to a synthetic peptide composed
of amino acid residues 9-21 of herpes sim-
plex virus type 1 glycoprotein D (123).
The neuroleptic activity of haloperidol
increased in the presence of the nonionic
surfactant poly(55)oxypropylene/dipoly
(8)oxyethylene (124). Parental P388
murine leukemia cell lines sensitive to adri-
amycin, a subline of P388 resistant to adri-
amycin; sarcolemma-180; and Ehrlich
ascites tumor were used to study the influ-
ence of nonionic surfactants on the activity
of adriamycin. An enhanced biosynthesis
inhibition by adriamycin was observed
when used in combination with Brij 30 or
Brij 35 in all the murine tumor models.
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The increase in adriamycin cytotoxicity
was due to an increased accumulation of
adriamycin in the tumor models (125).
Polyethoxylated nonionic surfactants with
no similarities in the hydrophobic moiety
are able to reverse multidrug resistance in a
human leukemia cell line (126). Triton X-
100 prevented the net uptake of vinblastin
in inside-out membrane vesicles prepared
from multidrug-resistant human leukemia
cells (127).

It can be established that nonionic sur-
factants are moderately toxic to humans,
and they probably can synergistically
increase the toxicity of other xenobiotics.
However, the beneficial effect of surfac-
tants (promotion of penetration of drugs
across the skin, increase of the effect drugs)
probably overshadows their eventual nox-
ious effects, and these compounds can be a
useful tool for the improvement of human
health care in the future.

Conclusions
Nonionic surfactants are widely used in
many fields and exert both beneficial and
toxic effects. They bind to proteins as well
as to phospholipids influencing (stimulat-
ing or inhibiting) enzyme activity and
membrane permeability. Hydrophilic and
hydrophobic forces are simultaneously
involved in the binding, and the effects
observed are the result of the interplay of
the various interacting forces. As recent
research indicates, the biological effects
strongly depend on the structure of surfac-
tants. We need additional data for the more
profound elucidation of the relationship
between molecular structure and biological
efficiency. With the exact knowledge of this
relationship, it will be possible to select for
each purpose a surfactant with minimal
toxicity and maximal benefits.
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